

HWHWii^jpyw 1 I M I» I »■! i I ■■ I.LII f~~m

\

,1 i

•.

A

"W ^y
□
^

i

-^ -—- "--" *■ ■--:- -'"- ■

fciiinii i'iidilii'i'yiiiiiihVi

—■■■ "-• i lliiiilülilMAlMli^M—ÜilllliliiiMMI'iiilliril

I
:\

■■ - -—-—.^-^-^>^^—^

■pmKBü* IPP^^^W"^"1*- ii-j-^-^i ■ ■-■.. >• > >

PROCEDURAL EVENTS AS SOFTWARE INTERRUPTS

by

Odd Pettersen

Stanford University

Artificial Intelligence Laboratory

June 1975

ABSTRACT and Introductory remarks

- ^The paper deals with procedural events, providing a basis for synchronization and
scheduling, particularly applied on real-lime program systems of mult.ple parallel act.v.t.es

<VUlt,Thereis & great need for convenient scheduling mechanisms for minicomputer
systems as used in process control, but so far mechanisms somewhat s.milar to those
^ropo^d here are found only in PL/I among the generally known h.gh-level language .
PL/I however, is not very common on computers of this size. Also, the mechanisms m PL/I
«;pem more restricted, as compared to those proposed here. . .. 4 .
seem ™re ^ <r' S^wtprW™ triable, the EVENTMARK, is proposed. Eventmarks
represent events of any kind that may occur within a computational process and are
bTeved to give very eff.cient and convenient activation and schedul.ng of program
modules in a real-time system. An eventmark is declared similar to a procedure, and the
proposed feature could easily be amended as an extens.on to ex.st.ng languages, as well
as incorporated in future language designs, h,

^^Schlduling^^ynchroni^tion, language design, parallel programming,
multiproiramming, co-Kurrenl processes, process commumcat.on, shared variables, events,

software interrupts.

CR Categories: 3.80, 3.82. 4.12. 4.20. 4.30. 4.32. 4.35

This research was supported in part by the Advanced Research Projects Agency of the Office of the
Sfcretarv of Defense under contract DAHC I5-73-C-0435. _, . u , L
n/vZnndconclusUms contained in this document are those of the author and shoulä note
Zrpreted as necessarily representing the official policies, either expressed or mphed, of the
Advanced Research Agency or the US Government.

;|: ^rriirnl addrrss:
Stanford Artificial Intelligence Laboratory
Computer Science Dept.
Stanford University
Stanford, CA. 94305

AildrrKS .\ficr August 1975:
7 he Technical University of Norway
Div. of Engineering Cybernetics,
7034 Trondheim - NTH
Norway

-A

WWPi»IP^»P^WI^WWpPF^!^

%i

-2-

INTROÜUCTION

Scheduling and mutual synchronization of individual parallal activities ("tasks") in a real-time
multiprogramming, and possibly multiprocessing, system is governed by conditions of various Kinds, as
required by participating parallel activities. Some conditions are linked to time events, like

B - (t > tl) (1)
where:

t is "wall clock time"
tl is some predetermined time
B is the condition, recognized as a binary boolean quantity.

Another typo of condition, not linked to time, may be:
B - (a = 1)

whore a, for example, can be representing an external boolean signal, of some finite duration.
(2)

«

A third example represents a common case:
B •- (x > y)

where x and y may be computed quantities.
(3)

Conditions of this Kind are cither generated in some program modules or read in througi the input
system They are generally used as activating conditions for program modules, different from wV>re they
arc generated.

It is well recognized that the fastest response is obtained by use of interrupts, if the -»'igin of
event-; like those mentioned above is some hardware source outside the central processor, and if i* is also
required that a high degree of central processor utilization oe maintained.

none of the languages in general use are known to have similar mechanisms for internally generated
events, however, although we can simulate interrupts by different means: We can us* trop instructionr,,
special instructions activating the hardware interrupt system, or we can jump directly into some special
place in the interrupt handling routine.

Both simulated interrupts and active restarting, like Example 1 below, depend, however, on actions
in the program module generating the event (source module). We have no means to specify, in the
receiving program module, what arbitrary conditions we want as trigger, if these conditions occur in a
different module. The only way a receiving module can discover if some event has occurred in some other
program module, is by repeated testing. This is very wasteful in respect of processor resource utilization,
and moreover, this waste increases proportionally with required decreased response time. If a module could
specify relations like eq. (1) to (3) as events which are wanted to subsequently trigger certain effects, and
then suspend itself or do something useful, we would have a software feature resembling the hardware
interruot mechanism.

In Example 1, "receiving module" suspends itself by an appropriate monitor call. A subsequent
monitor call WAKE in another program can restart a suspended prograi.i. In this case, the call WAKE(TA)
will reactivate program TA to continue at the point immediately following where it was suspended (label
LAI).

Rep.-ated testing is illustrated in Example 2, where "receiving module" is Program TB in two
alternative versions, TBI and TB2. A condition is changed in "source module" Program SB. Ir the case of
TB1, this program is always active; repeated testing is the processortime-wasteful "busy waiting". TB2 is
potentially less wasteful, but involves a trade-off between response-time a->d processor time sperdings,
selectable by some choice of value for tdelay. This seems to be the method used in [2] for recognizing
change in specified conditions.

Example 1: Active re-starting from source program.

Program SA:

x:» ;
WAKE(TA);

wr" v'w '■•,." *<i"sr"r'mii.mivi*Kiy*i**m*m

1

r>Oi>uTn TA.

SUSPEND;

LA1: comment r.activaline * LAI, p«rform«d by call in protr.m SA Evaluation of som« function y:.f(x).;

Example 2: Testin6 and "busy waitinj"

Proginm So.

COrment som« function evaluation changing x;

Program TBI

LB1: if x < xl then go to LB1;
y.. . comment some function y«f(x).;

■

Program TB2.

LB2: 7^ x < xl then begin
SUSPEND(tdelay);
comment suspend for duration tdelay, then test again.;
go to LB2 end;

y., . comment some function y«f(x).;

It is my intention, with the present paper, to present procedural events as a more efficient method
to perceive expected conditions. I want to show that such procedural events can be implemented relatively
easily and that they can give substantial benefits in ease of programming and scheduling of independent
but interacting parallel activities in a multiprogramming/multiprocessor system, particularly real-time (RT)
systems Such events constitute a real software counterpart to hardware interrupts, and I call them
Mccedxna! because they resemble procedures in the way they are declared and evaluated.

Short reaction and processing time is a major requirement, if software "interrupts are to resemble
hardware interrupts; this requirement is considered seriously and it makes internal testing and "busy
waiting" quite superfluous and obsolete.

To earn speed during run-time, some conditions are prepared during compilation time. Thus, it
requires some minor modi.ications and additions to the compiler. If not realizable for existing systems, it
should be very easy to include in new systems, however.

Program elements for synchronization and scheduling, app ymg procedural events, are covered only
summarily in a following section, since the author hat considered this problem in a separate paper [1],

DEFINITION OF "EVENT"

I find the f-)llowing definition of the term event applicable:

An event is a significant discrete occurrence or incident which is intended to affect some program
execution in a planned manner. The source of an event can belong logically to an entity distinctively
apart from the affected program unit or units. An event itself occurs instantaneously and is of
infinitesimal duration. The fact that an event has occurred is indicated by an eventmark which is a
binary-valued program variable of type Boolean.

-^^-a^.a.^.^.-.j.A -■ ^-J-... .■.-^—-■ -'-•-■ - •^-^aHl^r'rfr^ni•■Jl...^-..—.L.-.-^.- I.

inpi. i) mui^i—^py ■ IWIII M HI MJ R ^I"^W"»)I

f

physical n.tur« r. raden2ed by som. cond.tion ch.ng« w.«hin • program as a cons.quence of
l: P^rr «t?onC ^1 Sony to th. ..Uct 0 1. « - no. d.s.ingu.sh.d b.tw.en

^.^•U- -m ^m^ ... d .on. B ... an .^,

oM" .fin. i... -ado false. ^Y e-mg U an updat d ^^^J^, 0< de)ining ^.Uon.. liKe (1) to
I have. h.therto. Imked eventmarks to °" f 8'ew S mPcal corr

P
ect boolean expression may be used.

(3) The beauty ot the concept ,s ^^* ^Sf £5.2 express.on could also, for example, be
de.mmg a part.cular ^^^.^^^7^. There is v.rtually no limitation, although

Z^y ^.S' Ä^;;. ^ some mor.P run-tim. to though usu.Hy not

excessively more time.

DECLARATION OF EVENTMARKS AND BLOCK STRUCTURE OF THE LANGUAGE

eVcntmarkB:-M\', C:-avbA.; D:Sqvx>y end;

«,.(-H in «ha laneuaee should be available for use to its full

„ivanLte, .1« in combin..»» w,l ^^ bErTÄ r.!^ H rt v»l*l« I. th. «W»!

^ÄrÄ^«^^^^ J^1 b y*,•"" ^ Pr08 '
thc free vanables. or some of them be local w a ;emajning program mcluding the receiving
could, for example, be to "^^ '^^'t 0thlrce and reaving module, however; thus th.
module(s). The eventmark must be "^°" ,0 D0 her 1-vel in the b,ock hierarchy,
eventmark^) would belong to. compr sing blocM^ ^ ^ ^ ^^ decl|irationSp

Th-s consequence contradicts the rules of poss ^ ^ ^^^^ ^ able namei ,,

where the free var.ables may ^«^ ' ^ ^ block heading convming the declaration.
^ ^ÄrSÄ^Ä'ST^ »hat th. eventmark declaration and th. proc.du..

dec.arat.on are considered slightly ^^^ZX^*^*****. « variables, either
All variables involved m ^^ÄÄlV^lS to the point where the eventmark declaration

at the same level or at a higher ^""^^^ ^ec ".red elsewhere, as a boolean van.bl.. either in the
is placed. Thus, the eventmark name ^^b'7k ,;e,.s,ructur. <, the participating variables may be
sam« block-head or a. a higher level ^^S^W^te" equa.ion mere.y serves to define th.
chosen according to »^^^ j^^J^STdSSrld boolean variable .s .n ev.ntm.rk and
Ä SÄÄ.--^>^Ä« ****** ^n, the suggested TEV-t.t...

l
■I
^ ■■--■--■■'-'II'I 11 ill wiiM r in iifi^ -■—-^— ■ --"*

Th« typical blocR-structur» would, for •xampl«, look lik»:

btgin IwoleanB, CD; boolean array F[l:iO];

^cc^'n PROGRAM 1 real »l.x.y, hoolean i, b, •, q;
ei/entmark B:=t>tl; D:-qvx>y end;

x :=

end;
begin PROGRAM 2 real p, s, --

await D;

end;

i
I

end mam program;

BaS1eally the mam reason for th. nec.ssily of d,via1inE from identity with procedure declaration is
that th^lte serves a double functon: The introduction and declaration of the procedure name ,tself, and
hat the 'f'er erveS a , Wlth (orma, param,t,rS| body, and its relation to the procedure name. For

the ^^^^^^Z^Zi^ can conveniently be combined, whereas they need to be
::™*:v^.^X^£ s ,z* ö.^. ^.^ fo cope of»»v^^.

A NOTE ABOUT IMPLEMENTATION IN COMPILER

Th„ doclarat.on like (4) will tell the compiler that the "free" v.r.ables on right hand side of the defining The declaration like ^ w ^ may caus6 an ,v,ntmark ,0 b„0na

•quellen« M ,h°s'i;j'f'"•,", „^ cables that can affect an eventmark directly. Thus, the compiler
true and ^'•'^ ^l^j0"'the evert mark declaration, generate a temporary table (here celled

£ uVÄÄ ^providing r-,erenc',0!?eventmarh: KTd,n^ luZ docLra^ns Generally, one variable may be an argument for more then o tm.rk. so th.t

'^^r'^e^r^S'^^res'^procedure declaration, since i, defines .n ..g.broic
expreß wh^ch Ts"o be u.ed for evaluation of eventmark value. Just like any other .Ig.bra.c expression,

each eventmark will be represented by a parsed tree.

GENERATION OF EVENTS

th- , „mnilation every time an assignment is encountered, the TEV-table is checked ageinst
During the ^^^V^^ is \n .„try in the TEV-table, a reference to the eventmark

tho assigned variable. If the "^"^J.3;'^''''',ed in
y

th, ,6nerated code stream immediately following
evaluation routine in the »P^^uenc^ s Th*t eve y time .Tw value is computed for a variable that
r. STanirrn 7^^^«^ -lark, this eventm.rk expression o evaluated.

and ^yTn're.1 Ihro^VSsTstr^will ^ ^ ^ ****** ^, ^y tables.
A A \ „Zr,™ modules that await some event. Let us here distinguish between internal scheduling

f V. Kvi fhe OS uses wten RT pr^g ams are preempted due to limited processor or memory resources,

frl^fÄ iser^but not the'latfer. Only the latter table is of concern here and is her. c.ll.d th.

^"'^As'^nt 'an'^entmark is evaluated, the scheduler is notified accordingly Thus. th. conc.rn.d
program(s) may be activated very fast, shortly afer the ac'.iv.ting eventmark became true.

■ -'—■- ■ -■*'■- ^"iit mt*- j--■■-■•■-"■ *—: ■*■" ■-■■-^^ .■.^■.1.u.... .-.. ii-i-['l ll.ii'iiii miliiliim

:■ ■

-6-

WOIDANCE Of EXCESSIVE SLOW-DOWN OF EXECUTION

••bottlenecks" are ol no concern, me p 6

SPECIFICATION OF TRIGGERING EVENTS

(6)

servo as typical cases:

. . „.ram PROG may be «artld when .n ev.ntmarK D becomes true:
* A designated program, f'KUi., may u-

starUPROG, D);

^ A program may, ai any pvi
subsequent reactivation:

(7)

Er^nt The prog -es execution at t«. point when C becomes true;

As shown in ,. -chron.ation and resource-^ may be control .ttective.y by the us. ot

conditional critical regions with priorities:

region v:«p when B do S
recpon v:=p do S
awa i t B

(8)
(9)

(10)

where:
V

p
B

S,.,.^. (9) I. ««-I««- - '' •"'i'"'", "■,8, *"•" B■,rl,•

'..-, .k-^.-- -■ - ... - - *.-^.~J>J^. - , .

»ÜPWP«"W^^« »""W—■^W^WW^WP^Pf- . - I.' . I' '-.' U. J III) II

«

-/-

■ *
*
*

, rtl ,«1101 um «i "««lion ol • mM* -oulin. «hid. .»p."* »» M»1"I

pr05r,
A

m" rr^u; r ^^ -- '*«»• ^'^ -^
Condition B it Iru. Utit.mon» I) and (10)) tomp,tins for th. sam« r«Bion
P i. hi|h-. comparod to priori i« »/° ^ ^ J ^^ ram

S
(sUt.m.n, (8) ,nd (91 ^: Ä^T^^nS; zzz^wv*****™*«) - ^)-

EJritls also v.ry coPnv.ni.nt .or th. protr.mm.r.

COMPARISON WITH PL/I SOFTWARE INTERRUPTS

ln PL/,, on. can sp.ci.y an arbitrary condition to cau.. th. activation of a c.rt.in pi.c. of cod.: ^ i j

whereCWilnr"1'tLb.r o. vari.bi.. and/or iab.ls (ID K . cond'Hon .nd can b. u8.d « a part ot ,

statement, (or .xampl.:

ON CHECK(nam.list)
BEGIN; (12)

END;

, A*U nrciN- - END-) will b. activate wh.n any v.riabl. in "n.m.list" is chang.d
Th. acfon blocK W0"*K™*6 Th^s rl.mbl« an int.rrupt m.ch.ni.m, with .oftw.r. mt.rrupt
or any lab.l in n'^\jr^B ^r^
generat.d when.v.r a ch.ng. If ^^ ' *" ,, •,x,cu,, , e.rt.in pi.c. ot cod. wh.n.v.r a c.rtam
Samel.st Generally, ^w.v.r, w« do not ^J,» •^'4ftorm-

P
wh.„. for .x.mpl.. th. particular

v.riablo i« merely chan^ *^*r'^"™ "9\t ^w d.p.nd8 on . bool.an /unction of th.
variable is within or O^« V" ^ ""« ^^^
variabl

ON CHECK(nam.li8t) IF bool.an .xpr.ssion THEN
BEGIN; (13)

END;

The ON..at.m.nt 1. activ.t.d .v.ry ^Z^^^^^^ ^ ^ ^

dlHere
Tnc:s.

nrhouTwHicH at Last m,K. j^^Ät ^^ ^Äit y for th. compiler to
A declared eventrrarK stands out ^^•/•^^f.d directly under sup.rvision of th. monitor,

generate a fast expression, wh.ch .n ""r^^" ^^'^r. int.grat.d with th. r.st of th. application
iith monitor priority. "**^"f}J^i£ZZZ * th. bool.an .xpr.ssion from th. r.st tTih monitor priority. Th. construci "»'J^^^^^ **** «pr.ssion from th. r.st
proRram, which makes it ^^^^i^^JTSm an .xc.ption, th. whol. construct (13)
of the code. Unless th. «^^Tf^L d oS cod. application program. In r.l.tion to sch.duling,
W1„ b« compiled to a ^^^J^^IS^^SL will then c.us. th. whol. IF - THEN --
every software interrupt, c.us.d ^^Sm!^^Sh ** ***** wh#n Priori,it8 'nd 0ther

BEGIN; - END; cod. pi.« to Jf^J^SJ1 J ^"booUan .xpr.s.ion fn.r.lly t.K.s place
scheduling conditions allow. ^J^^jT^ ^ true («u.lly th. .xc.ption), . con8id.r.bl.
substantially mor. oft.n «^^^^jJ^Si som.wh.i"bu.y wiiing" of Program TB2

T^^XTT. rTvirltÄ^uX'JL/l «..ting i. in Princip... wst.fu. b.c.us. th.
^Pression is eva,u,!.d on.y w ri.bl. is chang.d.

M^^M^MM

wm*—— i ■'■ " ilWpi.ILl Mil ■Uli.ilM^p™ ii iiimnimi.. uuifpil LkM»1

i 1 IM compiLr comlrudion-, •»">' "''•"•"'p^.rdin. i), l>«r«>"il pr.l.r.n« miy b. dllf.r.nl,

REFERENCES

I»]

[2]

P.lter.en. 0. SYNCHRONIZATION 0'^^ in Comm. ACM.
Submitted February Wl^Mm^Vf™ PHYSICAL PROCESSES.

•

ifc
.■l....^...-^ ■ .-...■.,.^..,.^. ...w.-- ^ . nuiifiiiiir—'-'

